Mayo Test ID EEEV1 Red Blood Cell (RBC) Enzyme Evaluation, Blood
Necessary Information
Metabolic Hematology Patient Information (T810) is strongly recommended and should include clinical history. Testing may proceed without this information, however if the information requested is received, it allows for a more complete interpretation.
Specimen Required
Container/Tube:
Preferred: Yellow top (ACD solution B)
Acceptable: Yellow top (ACD solution A)
Specimen Volume: 12 mL
Collection Instructions: Send whole blood specimen in original tube. Do not aliquot.
Useful For
Identifying defects of red blood cell enzyme metabolism
Evaluating patients with Coombs-negative hemolytic anemia
Profile Information
Test ID | Reporting Name | Available Separately | Always Performed |
---|---|---|---|
EEEVI | Erythrocyte Enzyme Interpretation | No | Yes |
G6PDC | G6PD Enzyme Activity, B | Yes, (Order G6PD1) | Yes |
PKC | PK Enzyme Activity, B | Yes, (Order PK1) | Yes |
GPIC | Glucose Phosphate Isomerase, B | Yes, (Order GPI1) | Yes |
HKC | Hexokinase, B | Yes, (Order HK1) | Yes |
AKC | Adenylate Kinase, B | Yes, (Order AK1) | Yes |
PFKC | Phosphofructokinase, B | Yes, (Order PFK1) | Yes |
PGKC | Phosphoglycerate Kinase, B | Yes, (Order PGK1) | Yes |
TPIC | Triosephosphate Isomerase, B | Yes, (Order TPI1) | Yes |
GSH | Glutathione, B | Yes | Yes |
P5NT | Pyrimidine 5' Nucleotidase, B | Yes | Yes |
Testing Algorithm
This is a consultative evaluation in which the case will be evaluated at Mayo Clinic Laboratories.
Special Instructions
Method Name
EEEVI: Medical Interpretation
G6PDC, GPIC, PKC, HKC, AKC, PFKC, PGKC, TPIC, GSH, P5NT: Kinetic Spectrophotometry
Reporting Name
RBC Enzyme EvaluationSpecimen Type
Whole Blood ACD-BSpecimen Minimum Volume
5 mL
Specimen Stability Information
Specimen Type | Temperature | Time | Special Container |
---|---|---|---|
Whole Blood ACD-B | Refrigerated | 11 days |
Reject Due To
Gross hemolysis | Reject |
Clinical Information
Erythrocyte (red blood cell) enzyme deficiencies are inherited causes of hemolytic anemia. Some are very common, such as glucose 6-phosphate dehydrogenase (G6PD) deficiency, and others are very rare, found in only a few families around the world. Most are autosomal in inheritance, but some are sex-linked and located on the X chromosome. Most enzyme deficiencies result in chronic nonspherocytic hemolytic anemia of variable severity; however, some, such as G6PD, can be hematologically normal with episodic acute hemolysis due to a trigger event such as medications, toxins, or some foods. The red blood cell (RBC) enzymopathies do not typically show recurrent pathognomonic changes on the peripheral blood smear other than generic features of hemolytic anemia, although some such as pyruvate kinase deficiency can have echinocytes and pyrimidine 5' nucleotidase (P5NT) deficiency is associated with basophilic stippling. RBC enzyme activity levels are best evaluated as a panel as reticulocytosis can mask some deficient states and comparison to the background enzyme activity is useful.
This is a consultative evaluation of red cell enzyme activity as a potential cause of early red cell destruction.
Reference Values
Definitive results and an interpretive report will be provided.
Interpretation
A hematopathologist expert in these disorders evaluates the case, and an interpretive report is issued.
Cautions
Recent transfusion may mask the patient's intrinsic enzyme activity and cause unreliable results.
A very high white blood cell count can contribute to interference and falsely raise the activity of some enzymes.
Some enzyme deficiency disorders can be masked by reticulocytosis, and comparison of activities of other red blood cell enzymes in this panel can be useful.
Clinical Reference
1. Koralkova P, van Solinge WW, van Wijk R. Rare hereditary red blood cell enzymopathies associated with hemolytic anemia - pathophysiology, clinical aspects, and laboratory diagnosis. Int J Lab Hematol. 2014;36(3):388-397
2. Beutler E. Glucose-6-phosphate dehydrogenase deficiency and other enzyme abnormalities. In: Beutler E, Lichtmann MA, Coller BS, Kipps TJ, eds. Hematology. 5th ed. McGraw-Hill Book Company; 1995:564-581
Method Description
Glucose-6-Phosphate Dehydrogenase:
Glucose-6-phosphate dehydrogenase (G6PD) in a hemolysate catalyzes the oxidation of glucose-6-phosphate to 6-phosphogluconate. Concomitantly, nicotinamide adenine dinucleotide phosphate (NADP[+]) is changed to its reduced form (NADPH), and the reaction is measured spectrophotometrically on an automated chemistry analyzer.(Beutler E. Red Cell Metabolism: A Manual of Biochemical Methods. 3rd ed. Grune and Stratton; 1984:68-71; van Solinge WW, van Wijk. Enzymes of the red blood cell. In: Rifai N, Horvath AR, Wittwer CT, eds. Tietz Textbook of Clinical Chemistry and Molecular Diagnostics. 6th ed. Elsevier; 2018:chap 30)
Pyruvate Kinase:
Pyruvate kinase catalyzes the phosphorylation of adenosine diphosphate (ADP) to adenosine triphosphate (ATP) by converting phosphoenolpyruvate to pyruvate. The amount of pyruvate formed is quantitated by adding lactate dehydrogenase and reduced nicotinamide adenine dinucleotide (NADH) and measuring the rate of decrease in absorbance spectrophotometrically at 340 nm as the NADH is oxidized to NAD(+) on an automated chemistry analyzer.(Beutler E. Red Cell Metabolism: A Manual of Biochemical Methods. 3rd ed. Grune and Stratton; 1984:68-71; van Solinge WW, van Wijk. Enzymes of the red blood cell. In: Rifai N, Horvath AR, Wittwer CT, eds. Tietz Textbook of Clinical Chemistry and Molecular Diagnostics. 6th ed. Elsevier; 2018:chap 30)
Glucose Phosphate Isomerase:
Glucose phosphate isomerase interconverts glucose-6-P (G6P) and fructose-6-P (F6P). In this assay, the F6P is then further converted to 6-phosphogluconate (6-PG) through the G6P dehydrogenase (G6PD) reaction resulting in the reduction of NADP(+) to NADPH. The reduction of NADP(+) is measured spectrophotometrically by the increase in absorbance at 340 nm on an automated chemistry analyzer.(Beutler E. Red Cell Metabolism: A Manual of Biochemical Methods. 3rd ed. Grune and Stratton; 1984:40-42; van Solinge WW, van Wijk. Enzymes of the red blood cell. In: Rifai N, Horvath AR, Wittwer CT, eds. Tietz Textbook of Clinical Chemistry and Molecular Diagnostics. 6th ed. Elsevier; 2018:chap 30)
Hexokinase:
Hexokinase catalyzes the reaction of ATP and glucose to G6P and ADP. In this assay, the formation of G6P is measured by linking its further oxidation to 6-PG to the reduction of NADP(+) through the G6PD reaction. The increase in absorbance, which occurs as NADP(+) is reduced to NADPH, is measured spectrophotometrically at 340 nm on an automated chemistry analyzer.(Beutler E. Red Cell Metabolism: A Manual of Biochemical Methods. 3rd ed. Grune and Stratton;1984:38-40; van Solinge WW, van Wijk. Enzymes of the red blood cell. In: Rifai N, Horvath AR, Wittwer CT, eds. Tietz Textbook of Clinical Chemistry and Molecular Diagnostics. 6th ed. Elsevier; 2018:chap 30)
Adenylate Kinase:
Adenylate kinase (myokinase) catalyzes the dismutation of ADP into adenosine-5'-monophosphate and ATP. In this assay, the reverse reaction is measured by following the formation of ADP with pyruvate kinase (PK) and lactate dehydrogenase reactions resulting in NADH being oxidized to NAD(+). The decrease in absorbance that occurs as NADH is oxidized is measured spectrophotometrically at 340 nm by an automated chemistry analyzer.(Beutler E. Red Cell Metabolism: A Manual of Biochemical Methods. 3rd ed. Grune and Stratton; 1984:93-95; van Solinge WW, van Wijk. Enzymes of the red blood cell. In: Rifai N, Horvath AR, Wittwer CT, eds. Tietz Textbook of Clinical Chemistry and Molecular Diagnostics. 6th ed. Elsevier; 2018:chap 30)
Phosphofructokinase:
Phosphofructokinase catalyzes the phosphorylation of F6P by ATP to fructose-1,6-diphosphate (FDP). FDP is then converted to dihydroxyacetone phosphate (DHAP) through subsequent aldolase, and triosephosphate isomerase (TPI) catalyzed reactions. The rate of formation of DHAP is measured by linking its reduction to alpha-glycerophosphate by alpha-glycerophosphate dehydrogenase, which results in the oxidation of NADH to NAD(+). The decrease in absorbance at 340 nm is measured spectrophotometrically as the NADH is oxidized on an automated chemistry analyzer.(Beutler E. Red Cell Metabolism: A Manual of Biochemical Methods. 3rd ed. Grune and Stratton; 1984:pp 68-71; van Solinge WW, van Wijk. Enzymes of the red blood cell. In: Rifai N, Horvath AR, Wittwer CT, eds. Tietz Textbook of Clinical Chemistry and Molecular Diagnostics. 6th ed. Elsevier; 2018:chap 30)
Phosphoglycerate Kinase:
Phosphoglycerate kinase catalyzes the phosphorylation of ADP to ATP by conversion of 1,3-diphosphoglycerate (1,3-DPG) to 3-phosphoglyceric acid. In this assay, the reaction is driven in the reverse direction. The formation of 1,3-DPG is then measured through the glyceraldehyde phosphate dehydrogenase reaction as 1,3-DPG is converted to glyceraldehyde-3-phosphate (GAP), resulting in the oxidation of NADH to NAD(+). The decrease in absorbance that occurs as NADH is oxidized is measured spectrophotometrically at 340 nm on an automated chemistry analyzer.(Beutler E. Red Cell Metabolism: A Manual of Biochemical Methods. 3rd ed. Grune and Stratton; 1984, pp 53-55; van Solinge WW, van Wijk. Enzymes of the red blood cell. In: Rifai N, Horvath AR, Wittwer CT, eds. Tietz Textbook of Clinical Chemistry and Molecular Diagnostics. 6th ed. Elsevier; 2018:chap 30)
Triosephosphate Isomerase:
Triosephosphate isomerase (TPI) interconverts GAP and DHAP. The rate of DHAP formation is measured by further converting it to alpha-glycerophosphate by alpha-glycerophosphate dehydrogenase, which results in the oxidation of NADH to NAD(+). The decrease in absorbance that occurs as NADH is oxidized is measured spectrophotometrically at 340 nm on an automated chemistry analyzer.(Beutler E. Red Cell Metabolism: A Manual of Biochemical Methods. Grune and Stratton 1984; van Solinge WW, van Wijk. Enzymes of the red blood cell. In: Rifai N, Horvath AR, Wittwer CT, eds. Tietz Textbook of Clinical Chemistry and Molecular Diagnostics. 6th ed. Elsevier; 2018:chap 30)
Glutathione:
Virtually all the nonprotein sulfhydryl of red blood cells is in the form of reduced glutathione (GSH). 5,5'-dithiobis (2-nitrobenzoic acid) is a disulfide compound that is readily reduced by sulfhydryl compounds, forming a highly colored yellow anion. The absorbance of this resultant yellow substance is measured by 412 nm and compared to that of a known standard.(Beutler E. Red Cell Metabolism: A Manual of Biochemical Methods. 3rd ed. Grune and Stratton; 1984; Alisik M, Neselioglu S, Erel O. A colorimetric method to measure oxidized, reduced and total glutathione levels in erythrocytes. J Lab Med. 2019:43(5), 269-277. doi:10.1515/labmed-2019-0098)
Pyrimidine 5' Nucleotidase:
Pyrimidine nucleotides have a spectral absorption curve that is markedly different from that exhibited by (normally present) adenine nucleotides, eg, ATP. The former have a peak at about 270 nm; the latter at about 257 nm. Thus, pyrimidine 5' nucleotidase deficiency may be ascertained by demonstrating a very high spectral absorption maximum of 270 nm in erythrocyte extracts.(Beutler E. Red Cell Metabolism: A Manual of Biochemical Methods. 3rd ed. Grune and Stratton; 1984:100-102; van Solinge WW, van Wijk. Enzymes of the red blood cell. In: Rifai N, Horvath AR, Wittwer CT, eds. Tietz Textbook of Clinical Chemistry and Molecular Diagnostics. 6th ed. Elsevier; 2018:chap 30)
Specimen Retention Time
14 daysPerforming Laboratory
Mayo Clinic Laboratories in RochesterTest Classification
This test was developed and its performance characteristics determined by Mayo Clinic in a manner consistent with CLIA requirements. It has not been cleared or approved by the US Food and Drug Administration.CPT Code Information
82955-G6PD Enzyme Activity
84087-Glucose phosphate isomerase
84220-Pyruvate Kinase Enzyme Activity
82657-Hexokinase
82657-Adenylate Kinase
82657-Phosphofructokinase
82657-Phosphoglycerate Kinase
82657-Triosephosphate Isomerase
82978-Glutathione
83915-Pyrimidine 5' Nucleotidase
LOINC Code Information
Test ID | Test Order Name | Order LOINC Value |
---|---|---|
EEEV1 | RBC Enzyme Evaluation | 72695-0 |
Result ID | Test Result Name | Result LOINC Value |
---|---|---|
PKCL | PK Enzyme Activity, B | 32552-2 |
GPICL | Glucose Phosphate Isomerase, B | 44050-3 |
G6PCL | G6PD Enzyme Activity, B | 32546-4 |
608409 | Glutathione, B | 2383-8 |
TPICL | Triosephosphate Isomerase, B | 44054-5 |
PGKCL | Phosphoglycerate Kinase, B | 44053-7 |
PFKCL | Phosphofructokinase, B | 72664-6 |
HKCL | Hexokinase, B | 49216-5 |
2734 | Pyrimidine 5' Nucleotidase, B | 2902-5 |
AKCL | Adenylate Kinase, B | 44051-1 |
608087 | Erythrocyte Enzyme Interpretation | 59466-3 |
608109 | Reviewed By | 18771-6 |
Day(s) Performed
Tuesday, Thursday